Desargues Graph
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the Desargues graph is a distance-transitive,
cubic graph In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bi ...
with 20 vertices and 30 edges. It is named after
Girard Desargues Girard Desargues (; 21 February 1591 – September 1661) was a French mathematician and engineer, who is considered one of the founders of projective geometry. Desargues' theorem, the Desargues graph, and the crater Desargues on the Moon are ...
, arises from several different combinatorial constructions, has a high level of symmetry, is the only known non-planar cubic
partial cube In graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial c ...
, and has been applied in chemical databases. The name "Desargues graph" has also been used to refer to a ten-vertex graph, the complement of the
Petersen graph In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is n ...
, which can also be formed as the bipartite half of the 20-vertex Desargues graph.


Constructions

There are several different ways of constructing the Desargues graph: *It is the
generalized Petersen graph In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways ...
. To form the Desargues graph in this way, connect ten of the vertices into a regular
decagon In geometry, a decagon (from the Greek δέκα ''déka'' and γωνία ''gonía,'' "ten angles") is a ten-sided polygon or 10-gon.. The total sum of the interior angles of a simple decagon is 1440°. A self-intersecting ''regular decagon'' i ...
, and connect the other ten vertices into a ten-pointed star that connects pairs of vertices at distance three in a second decagon. The Desargues graph consists of the 20 edges of these two polygons together with an additional 10 edges connecting points of one decagon to the corresponding points of the other. *It is the
Levi graph In combinatorial mathematics, a Levi graph or incidence graph is a bipartite graph associated with an incidence structure.. See in particulap. 181 From a collection of points and lines in an incidence geometry or a projective configuration, we fo ...
of the Desargues configuration. This configuration consists of ten points and ten lines describing two perspective triangles, their center of perspectivity, and their axis of perspectivity. The Desargues graph has one vertex for each point, one vertex for each line, and one edge for every incident point-line pair.
Desargues' theorem In projective geometry, Desargues's theorem, named after Girard Desargues, states: :Two triangles are in perspective ''axially'' if and only if they are in perspective ''centrally''. Denote the three vertices of one triangle by and , and tho ...
, named after 17th-century French mathematician
Gérard Desargues Girard Desargues (; 21 February 1591 – September 1661) was a French mathematician and engineer, who is considered one of the founders of projective geometry. Desargues' theorem, the Desargues graph, and the crater Desargues on the Moon a ...
, describes a set of points and lines forming this configuration, and the configuration and the graph take their name from it. *It is the
bipartite double cover In graph theory, the bipartite double cover of an undirected graph is a bipartite, covering graph of , with twice as many vertices as . It can be constructed as the tensor product of graphs, . It is also called the Kronecker double cover, cano ...
of the
Petersen graph In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is n ...
, formed by replacing each Petersen graph vertex by a pair of vertices and each Petersen graph edge by a pair of crossed edges. *It is the bipartite Kneser graph . Its vertices can be labeled by the ten two-element subsets and the ten three-element subsets of a five-element set, with an edge connecting two vertices when one of the corresponding sets is a subset of the other. Equivalently, the Desargues graph is the
induced subgraph In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset. Defini ...
of the 5-dimensional hypercube determined by the vertices of weight 2 and weight 3. *The Desargues graph is
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
and can be constructed from the LCF notation: . As Erdős conjectured that for , the subgraph of the -dimensional hypercube induced by the vertices of weight and is Hamiltonian, the Hamiltonicity of the Desargues graph is no surprise. (It also follows from the stronger conjecture of Lovász that except for a few known counter-examples, all vertex-transitive graphs have Hamiltonian cycles.)


Algebraic properties

The Desargues graph is a
symmetric graph In the mathematical field of graph theory, a graph is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices and of , there is an automorphism :f : V(G) \rightarrow V(G) such that :f(u_1) = u_2 and f(v_1) = v_2. In oth ...
: it has symmetries that take any vertex to any other vertex and any edge to any other edge. Its symmetry group has order 240, and is isomorphic to the product of a
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
on 5 points with a group of order 2. One can interpret this product representation of the symmetry group in terms of the constructions of the Desargues graph: the symmetric group on five points is the symmetry group of the Desargues configuration, and the order-2 subgroup swaps the roles of the vertices that represent points of the Desargues configuration and the vertices that represent lines. Alternatively, in terms of the bipartite Kneser graph, the symmetric group on five points acts separately on the two-element and three-element subsets of the five points, and complementation of subsets forms a group of order two that transforms one type of subset into the other. The symmetric group on five points is also the symmetry group of the
Petersen graph In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is n ...
, and the order-2 subgroup swaps the vertices within each pair of vertices formed in the double cover construction. The generalized Petersen graph is
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in ...
if and only if and or if and is
edge-transitive In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal () or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given t ...
only in the following seven cases: , , , , , , . So the Desargues graph is one of only seven symmetric Generalized Petersen graphs. Among these seven graphs are the
cubical graph In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...
, the
Petersen graph In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is n ...
, the
Möbius–Kantor graph In the mathematical field of graph theory, the Möbius–Kantor graph is a symmetric bipartite cubic graph with 16 vertices and 24 edges named after August Ferdinand Möbius and Seligmann Kantor. It can be defined as the generalized Petersen gra ...
, the
dodecahedral graph A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges ...
and the
Nauru graph In the mathematics, mathematical field of graph theory, the Nauru graph is a symmetric graph, symmetric bipartite graph, bipartite cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag o ...
. The characteristic polynomial of the Desargues graph is : (x-3) (x-2)^4 (x-1)^5 (x+1)^5 (x+2)^4 (x+3). \, Therefore, the Desargues graph is an integral graph: its
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
consists entirely of integers.


Applications

In chemistry, the Desargues graph is known as the Desargues–Levi graph; it is used to organize systems of
stereoisomer In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in ...
s of 5-
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
compounds. In this application, the thirty edges of the graph correspond to
pseudorotation In chemistry, a pseudorotation is a set of intramolecular movements of attached groups (i.e., ligands) on a highly symmetric molecule, leading to a molecule indistinguishable from the initial one. The International Union of Pure and Applied Chem ...
s of the ligands.


Other properties

The Desargues graph has rectilinear crossing number 6, and is the smallest cubic graph with that crossing number . It is the only known nonplanar cubic
partial cube In graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial c ...
. The Desargues graph has
chromatic number In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices ...
2,
chromatic index In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blu ...
3, radius 5, diameter 5 and girth 6. It is also a 3- vertex-connected and a 3- edge-connected
Hamiltonian graph In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
. It has
book thickness In graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings into a ''book'', a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie ...
3 and
queue number In the mathematical field of graph theory, the queue number of a graph is a graph invariant defined analogously to stack number (book thickness) using first-in first-out (queue) orderings in place of last-in first-out (stack) orderings. Defi ...
2. All the cubic
distance-regular graph In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices and , the number of vertices at distance from and at distance from depends only upon , , and the distance between and . ...
s are known. Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance-Regular Graphs. New York: Springer-Verlag, 1989. The Desargues graph is one of the 13 such graphs. The Desargues graph can be embedded as a self-
Petrie dual In topological graph theory, the Petrie dual of an embedded graph (on a 2-manifold with all faces disks) is another embedded graph that has the Petrie polygons of the first embedding as its faces. The Petrie dual is also called the Petrial, and ...
regular map in the non-orientable manifold of genus 6, with decagonal faces.


Gallery

Image:Desargues graph colored.svg, Desargues graph colored to highlight various cycles. Image:Desargues graph 3color edge.svg, The
chromatic index In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blu ...
of the Desargues graph is 3. Image:Desargues graph 2COL.svg, The
chromatic number In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices ...
of the Desargues graph is 2.


References

{{DEFAULTSORT:Desargues Graph Individual graphs Regular graphs